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Abstract. A linear stability analysis is applied to the onset of bouyancy-driven convection in a horizontal layer
of reacting fluid overlying a porous region saturated with the same fluid. The fluid is assumed to be undergoing
zero-order exothermic reactions in both regions. At the interface between fluid and porous layers the boundary
conditions proposed by Nield [1] are employed; these include the empirical slip condition suggested by Beavers
and Joseph [2].

Predictions for the onset of convection and critical wavenumbers are obtained from the analysis by the
collocation method and solution of the resulting generalized eigenvalue problem. The effect of variable fluid/porous
layer depth ratio, Frank–Kamenetskii number or thermal boundary conditions on the onset of fluid motions is
studied, and ignition values of the Frank–Kamenetskii number for the system are calculated.
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1. Introduction

The onset of convection in a layer of fluid overlying a porous region saturated with the fluid
has many important applications in industry and geophysics. When a binary alloy is solidified
directionally by cooling from below, a ‘mushy zone’ separating the melt from the solid may
form (see, e.g., Glicksman et al. [3]). This dendritic region is regarded as being a porous
domain of variable permeability adjacent to a fluid layer. Following meltdown in a nuclear
reactor, heat can be removed from solidified fuel particles by flooding the core with coolant
(Schulenberg and Müller [4]). Mathematically this is modelled as a layer of fluid and one of
saturated porous material. Similar fluid and porous interactions can model thermal storage
systems and porous heat pipes. In geophysics flow within fluid and underlying porous layers
has been presented by McKay and Straughan [5] in order to describe the generation of stone
polygons on lake beds.

Several authors have investigated thermal instability in superposed fluid and saturated
porous layers. Nield [1] considered a layered model and employed an empirical interfacial
condition at the fluid/porous interface suggested by Beavers and Joseph [2]. The thermal
stability for different systems of superposed porous and fluid regions has also been analyzed by
Pillatsis et al. [6], and Taslim and Narusawa [7]. Chen and co-workers carried out experimental
investigations and also studied the effects of salt-finger convection, throughflow and anisotropy
in the porous matrix [8, 9, 10, 11].

Somerton and Catton [12] utilized the Brinkman extension to Darcy’s law to analyze a
two-layer region subject to constant volumetric heating. Similarly, in [4] simple interfacial
conditions are employed in a study with constant internal heating. In many practical situations,
however, constant heating within a fluid does not accurately describe the heat generated within
the region, e.g., fluids undergoing exothermic thermal reactions.
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Figure 1. Two layer model.

The heat generated by a chemical reaction creates density differences in the fluid which
can induce natural convection. Buoyancy-driven convection of reacting fluids within porous
media occurs during oxidation of solid materials in large containers or the synthesis of
ceramic materials. Furthermore, natural convection within porous media can remove heat
from radioactive waste products waste products or delay the thermal explosion of coal piles
or waste dumps. Therefore, the conditions for the onset of convection in a porous region are
of great interest.

Jones [13] derived conditions for the onset of convection in an infinitely long region of
reacting fluid. For a porous medium Kordylewski and Krajewski [14] considered natural
convection based upon Darcy’s law and assumed a zero-order exothermic reaction. Farr
et al. [15] carried out a stability analysis for a similar convection problem, while Viljoen
and Hlavacek [16] and Subramanian and Balakotaiah [17] solved the system numerically.
Bifurcation studies of this type of convection have been carried out by Viljoen et al. [18],
and Nandakumar and Weinitschke [19]. Malashetty et al. [20] also considered instability in a
saturated porous region subject to cooling from above and different lower thermal conditions.

In this paper we examine the instability of a fluid layer overlying a saturated porous region
and heated from below. We assume that the fluid is undergoing a zero-order exothermic
reaction in both layers. Via a linear instability analysis we will obtain sufficient conditions
for the onset of fluid motions in the system. These conditions are given as critical Rayleigh
numbers for the fluid or for the porous region above which convection is guaranteed. We
study the effect of variable layer thickness and thermal boundary conditions on the stability
of the system. In addition we calculate ignition conditions for the system and investigate the
influence of chemical heating, permeability or porosity on the stability of the fluid.

2. Model

We shall suppose that the reacting fluid occupies the infinite layer between z = 0 and z = d.
Underlying is a region of fluid and porous material between z = �dm and z = 0 (see Figure
1). We shall assume the inert porous matrix to be homogeneous, saturated and in local thermal
equilibrium with the chemically reacting fluid. The region is cooled from above with the upper
boundary z = d kept at a constant temperature of T = Tu, where T is the fluid temperature.
We assume that the temperature of the whole domain varies only slightly from Tu so that a
zero-order reaction can be assumed. Throughout a sub- or super-script m denotes a variable
for the porous layer.
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In the fluid layer z 2 (0; d) we have a linear viscous, incompressible fluid. Employing the
Boussinesq approximation, we obtain the equations of motion

�0(ui;t + ujui;j ) = �p;i + �ui;jj � �0gki[1� �(T � Tu)]; (1)

ui;i = 0; (2)

T;t + uiT;i =
kf

(�0C0)f
T;jj +Q exp

�
� E

RT

�
; (3)

where u; T; p; t; �; g; kf ; �0; �; C0 are, respectively, fluid velocity, temperature, pressure, time,
dynamic viscosity, gravity constant, thermal conductivity, fluid density, thermal expansion
coefficient and specific heat. Further, (�0C0)f is the thermal capacitance for the fluid. Standard
indicial notation has been employed with k = (0; 0; 1). The final term in (3) represents the heat
generated by the reacting fluid. Also, E is the activation energy, R the universal gas constant
and Q is the product of the heat of reaction, reactant concentration and a pre-exponential
factor. In general, the reactant concentration is variable; however, in this study attention is
restricted to a zero-order reaction in the fluid where only a negligible amount of reactant is
depleted (i.e. Q is assumed to be constant).

In the porous media z 2 (�dm; 0) the equations of motion we adopt are based upon
Darcy’s law and the Boussinesq approximation (see Nield and Bejan [21]). The equations of
momentum, continuity and energy for the porous layer are

�0

�
u
m
i;t
= �pm;i � �0gki[1� �(Tm � Tu)]�

�

k0
u
m
i ; (4)

u
m
i;i
= 0; (5)

(�0C0)m

(�0C0)f
T
m
;t + u

m
i T

m
;i =

km

(�0C0)f
T
m
;jj + �Q exp

�
� E

RTm

�
: (6)

Here, um; Tm; pm; k0; � are fluid seepage velocity in the porous region, temperature, pressure,
permeability, and porosity, respectively. The parameters km and (�0C0)m are the effective ther-
mal conductivity and capacitance for the region, i.e., if kf and ks are the thermal conductivities
for the fluid and the porous matrix, respectively, then

km = �kf + (1� �)ks:

Finally, we observe that the final heat source term in (6) is pre-multiplied by porosity to take
into account the porous nature of the lower region; less heat is produced per unit volume in
the lower region owing to the presence of inert porous material.

For boundary conditions we assume the fluid surface to be rigid, i.e.

z = d : T = Tu; u3 =
@u3

@z
= 0: (7)

On the lower boundary of the porous region we assume that the bounding wall is isothermal
and rigid

z = �dm : T
m = Tl; u

m
3 = 0; (8)
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where Tl > Tu. The boundary conditions at the interface z = 0 guarantee continuity of normal
velocity, temperature, heat flux and normal stress

z = 0: u3 = um3 ; �p+ 2�
@u3

@z
= �pm;

T = Tm = T0; kf
@T

@z
= km

@Tm

@z
;

(9)

where the interface temperature T0 is to be determined. For the remaining condition at the
interface we follow Nield [1] who uses the empirical relation suggested by Beavers and Joseph
[2]. This relation relates slip velocity to flow in the fluid via

@u1

@z
=

��p
k0

�
u1 � u

m
1
�
;

@u2

@z
=

��p
k0

�
u2 � u

m
2
�
; (10)

where @=@z denotes the derivative as z ! 0+ and �� is a dimensionless quantity depending
on the physical properties of the porous material. Beavers and Joseph [2] based their law on
experimental evidence using three types of Foametal and two types of Aloxite for porous
media. For these materials k0 and �� have values ranging from k0 = 9�7 � 10�9 (m2) to
8�2� 10�8 and �� = 0�78 to 4 for Foametal, and k0 = 6�5� 10�10 (m2) to 1�6� 10�9 and
�� = 0�1 for Aloxite. Theoretical and experimental investigations have provided support for
this condition (see, e.g., Neale and Nader [22], Beavers et al. [23]). As remarked in Chen
and Chen [9], results are insensitive to variations in �� which is set to unity in this analysis.
Jones [24] offers an alternative condition involving shear stress rather than just velocity shear.
However in McKay and Straughan [5] it was shown that the extra terms introduced by the
shear stress relation had only a minimal effect. Attention here is restricted to the simpler
boundary condition (10).

Equations (1)–(3) possess a z-dependent conduction solution (�u; �p; Tu+Tr
��) and (4)–(6)

are satisfied by (�um; �pm; Tu + Tr
��m), where the reference temperature for the reacting fluid

Tr = RT 2
u=E and

�u = 0; �um = 0;

d�p
dz

= ��0g[1� �Tr
��];

d�pm

dz
= ��0g[1� �Tr

��m];

Trkf
d2 ��

dz2 = �(�0C0)fQ exp
�
� E

R(Tu + Tr ��)

�
; (11)

Trkm
d2 ��m

dz2 = ��(�0C0)fQ exp
�
� E

R(Tu + Tr
��m)

�
: (12)

Equations (11)–(12) are solved subject to boundary conditions

z = d : �� = 0;

z = 0: kf
d��
dz

= km
d��m

dz
; �� = ��m =

T0 � Tu

Tr
= �0; (13)
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z = �dm ��m =
Tl � Tu

Tr
= �l;

with �0 and �l defined as indicated. Assuming RTu=E = Tr=Tu � 1, we may rewrite the
exponent in (11) as

exp
�
� E

R(Tu + Tr
��)

�
= exp

�
� E

RTu

�
exp( ��);

with a similar expression for (12)
Introducing the variables

d̂ =
dm

d
; k̂ =

km

kf
; � =

Q(�0C0)fd
2

Trkf
exp

�
� E

RTu

�
;

where � is the Frank–Kamenetskii number, we obtain by integration of (11) and (12) solutions

� = 0: �� = �0

�
1� z

d

�
; ��m = �0

�
1� z

dk̂

�
;

� 6= 0: exp( ��) =
c1

2�

0
@1�

 
1� c2 exp(�pc1z=d)

1 + c2 exp(�pc1z=d)

!2
1
A ; (14)

exp( ��m) =
c3

2��

0
@1�

 
1� c4 exp(�pc3z=d)

1 + c4 exp(�pc3z=d)

!2
1
A ;

where

�
� =

��

k̂
:

Here c1; c2; c3; c4 are constants of integration, while the non-dimensional interface temperature
�0 is also determined by the boundary conditions. Indeed, when � = 0, we can show that

�0 =
�l

1 + d̂=k̂
: (15)

When � 6= 0, we substitute (13) in (14) to determine the constants of integration and �0 via

1 =
c1

2�

0
@1�

 
1� c2 exp(�pc1)

1 + c2 exp(�pc1)

!2
1
A ;

exp(�l) =
c3

2��

0
@1�

 
1� c4 exp(�pc3d̂)

1 + c4 exp(�pc3d̂)

!2
1
A ;

exp(�0) =
c1

2�

 
1�

�
1� c2

1 + c2

�2
!
=

c3

2��

 
1�

�
1� c4

1 + c4

�2
!
; (16)
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kf

q
c1 � 2� exp(�0) = km

q
c3 � 2�� exp(�0):

When dm = 0 or d = 0 (i.e. only one region of reacting fluid) we can solve (16) explicitly
for c1 and c2, or c3 and c4. However, in this study we restrict attention to 0�001 6 d̂ 6 100;
therefore we find the values of c1; c2; c3; c4 and �0 numerically.

Ignition begins in the system when the heat generated by the reacting fluid is high enough
to support further reactions without continual heat transfer from the lower boundary wall.
At this critical point there is no longer a stream of heat entering the system; therefore the
heat transported by convection is due entirely to the chemical reaction’s internal heating. The
ignition point corresponds to adiabatic conditions at the lower boundary

d�m

dz
(�dm) = 0: (17)

Applying (17) to (14)4 we obtain the ignition condition

�c =
c3k̂

2�
exp(��l); (18)

where �c is the critical (or ignition) Frank–Kamenetskii number beyond which the reaction
in the fluid is self-sustainable and the nature of the lower boundary condition changes. We
consider only Frank–Kamenetskii numbers below the critical value.

Figure 2. The effect of the lower boundary thermal
condition on ignition Frank–Kamenetskii number;
k̂ = 0�5; � = 0�5.

Figure 3. Variation of ignition Frank–Kamenetskii
number with depth ratio and thermal conductivity
ratio; �l = 1�0; � = 0�5.

In Figures 2, 3 we have computed critical Frank–Kamenetskii numbers for variable �l; d̂

and k̂. In Figure 2, �c obtains a finite maximum as�l is increased from 0 before monotonically
decreasing. For a single fluid layer (d̂ = 0) Malashetty et al. [20] calculate a maximum �c of
0�8785 at �l = 1�19. For the data considered in this two layer problem a maximum �c also
occurs at approximately �l = 1�20, even when the relative layer depths are allowed to vary.

If we allow the porous layer thickness, dm, to increase, while the fluid depth, d, is constant,
the overall thickness of the system and d̂ also increase. For fixed thermal boundary conditions
the increase in dm results in a decrease in the magnitude of the temperature gradients across
the system. The adiabatic condition for ignition can therefore be achieved for smaller values
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of the Frank–Kamenetskii number. In Figure 3 we observe that the decrease in �c is most
dramatic for 0�1 < d̂ < 10. The Frank–Kamenetskii number is defined as a function of d2,
so that �c ! 0 as d̂ ! 1. When the porous region is much thicker than the fluid layer,
we can obtain more information by defining a new Frank–Kamenetskii number related to
the porous-layer thickness. As d̂ ! 0; �c approaches a constant limiting value. This limit is
independent of the ratio of conductivities; however, there is a variation with �l. From Figure
3 it can also be seen that variation of the relative thermal conductivities has only a small effect
on the critical Frank–Kamenetskii number.

Figure 4. Constants of integration for variable
Frank–Kamenetskii number; d̂ = 1�0; �l =

1�0; k̂ = 0�5; � = 0�5; �c = 0�307.

Figure 5. Steady temperature profiles. Frank–
Kamenetskii number takes values � = (i=5)�c;
i = 0; : : : ; 5; d̂ = 0�5; �l = 1�0; k̂ = 0�5; � =
0�5; �c = 0�520.

From Figure 4 observe that the constants of integration and non-dimensional interfacial
temperature �0 all increase as � approaches its ignition value. We can extrapolate the plot
for exp(�0) back to the result for � = 0 by using (15). Undisturbed temperature profiles as a
function of the vertical ordinate are given in Figure 5 for different values of �. When � = 0,
the profiles are piecewise linear, the different gradients result from the different thermal
conductivities in each region (k̂ = 0�5). For � small the profiles remain piecewise linear.
However, as � increases the heat generated due to the chemical reaction also increases. This
gives rise to nonlinear basic profiles.

3. Linear stability analysis

We perform a linear stability analysis by introducing perturbations to the steady solution via

u = �u + v; p = �p+ �; T = Tu + Tr
�� + �;

um = �um + vm; pm = �pm + �m; Tm = Tu + Tr
��m + �m:

(19)

Substituting (19) in (1)–(6), we non-dimensionalize the perturbation equations with the scal-
ings

z 2 (0; d) : z = dz
�

; t = T
�

t
�

; v = V v�;



38 G. McKay

� = T
#
�
�

; � = P�
�

; T
� =

d2�0

�
;

V =
�

d�0
; T

# =
TrV d�(�0C0)f

kf
; P =

�2

d2�0
;

z 2 (�dm; 0) : z = dmz
�

; t = T
�m
t
�

; vm = V
mv�m;

�
m = T

#m
�
�m
; �

m = P
m
�
�m
; T

�m =
d2
m�0

�
;

V
m =

�k̂

dm�0
; T

#m =
d̂T #

k̂
; P

m =
�V mdm

k0

and by introducing dimensionless numbers

Da =
k0

d2
m

; A =
Da

�
; � =

�l

1 + d̂=k̂
; 
 =

(�0C0)m
(�0C0)f

; P r =
�(�0C0)f
�0kf

;

Ra =
gd3�Tr��0(�0C0)f

kf�
; Ram =

Da d̂4

k̂2
Ra:

Here, Ra is the Rayleigh number for the fluid region while Ram is the Rayleigh number for
the porous region. Da is the Darcy number for the porous matrix, Pr is the Prandtl number
for the fluid, A is the non-dimensional acceleration coefficient, and 
 is the ratio of thermal
capacities for the two layers. Finally, � is the non-dimensional interface temperature we expect
between the porous and fluid layers when � = 0.

The linearized non-dimensional perturbation equations are then (stars omitted)

vi;t = ��;i + vi;jj +Ra�ki; (20)

vi;i = 0; (21)

Pr�;t = �
"
d

�

d��
dz

#
w + �;jj + � exp( ��)�; (22)

for z 2 (0; 1), and

Av
m
i;t
= ��m;i � v

m
i +Ram�

m
ki; (23)

v
m
i;i
= 0; (24)

Pr



k̂
�
m
;t = �

"
k̂d

�

d��m

dz

#
w
m + �

m
;jj + �

�

d̂
2 exp( ��m)�m; (25)

for z 2 (�1; 0), where v = (u; v; w) and vm = (um; vm; wm). The boundary conditions on
the perturbation variables become

z = 1: w =
@w

@z
= 0; � = 0; (26)
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z = �1: w
m = 0; �

m = 0: (27)

The interface boundary conditions for the non-dimensionalized variables are now

z = 0: w =
k̂

d̂
w
m
; � =

d̂

k̂
�
m
;

@�

@z
=

@�m

@z
; (28)

�� + 2
@w

@z
= � k̂

Da d̂2
�
m
; (29)

@u

@z
=

��p
Da d̂

 
u� k̂

d̂
u
m

!
; (30)

@v

@z
=

��p
Da d̂

 
v � k̂

d̂
v
m

!
: (31)

Differentiating (30) with respect to x, (31) with respect to y and utilizing (21) and (24), we
can derive the following condition for the third components of the velocities

d̂3
p
Da

��

@2w

@z2 � d̂
2 @w

@z
+ k̂

@wm

@z
= 0: (32)

And in a similar approach we can obtain a single boundary condition from (29)

@3w

@z3 + 3��

@w

@z
+

k̂

Da d̂4

@wm

@z
� @2w

@z@t
+

Ak̂

Da d̂4

@2wm

@z@t
= 0; (33)

where �� = @2=@x2 + @2=@y2. The derivation of (32)–(33) is very similar to the analysis in
Nield [1].

We now take the third components of curl curl (20) and (23), then expand our variables in
normal mode form

(w; �) = (W (z); #(z)) exp(�t)�(x; y);

(wm
; �

m) = (Wm(z); #m(z)) exp(�mt)�
m(x; y):

Planforms �(x; y) and �m(x; y) are chosen such that

��� = ��2�; ���m = ��2
m�

m
;

where � and �m are the wavenumbers for the fluid region and the porous region, respectively.
It follows from the non-dimensionalization that these wavenumbers are related via

�m

�
= d̂: (34)

Similarly, the time-scales for the fluid and porous layers have been scaled differently, so the
growth rates � and �m are related via

�m

�
= d̂

2
: (35)
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Employing normal modes, we see that the linearized equations become

(D4 � 2�2D2 + �4)W � �2Ra#� �(D2 � �2)W = 0;

(D2 � �2 + � exp( ��))#�
�
d

�
D ��

�
W � �Pr# = 0;

(36)

for z 2 (0; 1); and

(D2 � �2
m)W

m + �2
mRam#

m + �mA(D
2 � �2

m)W
m = 0;

(D2 � �2
m + d̂2�� exp( ��))#�

"
dk̂

�
D ��m

#
Wm � �mPr




k̂
#
m = 0;

(37)

for z 2 (�1; 0), where D = d=dz. The boundary conditions become

z = 1: W = DW = 0; # = 0;

z = �1: W
m = 0; #

m = 0;

z = 0: W =
k̂

d̂
W

m
; # =

d̂

k̂
#
m
; D# = D#

m
; (38)

d̂3
p
Da

��
D

2
W � d̂

2
DW + k̂W

m = 0;

D
3
W � 3�2

DW +
k̂

Da d̂4
DW

m � �DW + �m
Ak̂

Da d̂4
DW

m = 0:

Conditions for the onset of convection in the two layers are obtained from (36)–(38); they
define a characteristic problem for � (or �m which is related to � via (35)). For fixed boundary
conditions and given values of (Ra; �) solutions to (36)–(38) can be found only for discrete
values of � (or �m). Since we are interested in the onset of stationary or oscillatory convection,
we seek critical Rayleigh numbers and wavenumbers for which �(Ra; �) is an eigenvalue of
our system and

Re(�(Ra; �)) = 0: (39)

The critical Rayleigh number for the fluid/porous system, Rac, is the minimum Rayleigh
number for which there exists an eigenvalue satisfying (39). The critical wavenumber at
which this minimum occurs is �c. Alternatively, depending on the relative depth of the fluid
and saturated porous layers, we sometimes employ critical numbers for the porous region

Ramc =
Da d̂4

k̂2
Rac; �mc = d̂�c:

Critical Rayleigh numbers Rac or Ramc represent a boundary for instability. When the
Rayleigh number and wavenumber of our system obtain their critical values, Re(�) changes
sign from negative to positive and fluid motions are guaranteed. If at the critical point Im(�) =
0, then exchange of stabilities holds and stationary convection occurs. Otherwise the motions
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in the layers are oscillatory. It is known that exchange of stabilities holds for convection in a
fluid layer, or in a saturated porous layer.

To obtain characteristic values from (36)–(38), we employ the collocation method (Boyd
[25]). First, we transform our regions z 2 (0; 1) and z 2 (�1; 0) into two domains over
zn 2 (�1; 1) via

z 2 (0; 1) : zn = 1� 2z; z 2 (�1; 0) : zn = 2z + 1:

In doing so, we now obtain a tenth-order system of equations on the domain zn 2 (�1; 1):
one fourth-order differential equation and three second-order equations. The upper and lower
boundaries of our original two layer problem now coincide at zn = �1, while our interface
between regions corresponds to zn = 1.

Next we discretize our domain zn 2 (�1; 1) into N -subintervals via Chebyshev nodes

xi = � cos
i�

N
; i = 0; : : : ; N:

For the collocation method the solution W (zn) is expanded in a series of Chebyshev polyno-
mials, i.e.

W (zn) =
NX
j=0

cjTj(zn); (40)

where cj are constant coefficients. The value of W (zn) at each node is given by

wi =W (xi) =
NX
j=0

cjTj(xi); i = 0; : : : ; N: (41)

The derivative of W (zn) can also be expanded in a similar manner

W
0(zn) =

NX
j=0

bjTj(zn);

from which we can obtain the derivative at each node point

w
0

i =W
0(xi) =

NX
j=0

bjTj(xi)

=
NX
j=0

dijwj ; i = 0; : : : ; N:

The vector w0 = (w0

0; : : : ; w
0

N )
T can now be written as

w0 = Dw;

where w = (w0; : : : ; wN )
T and D = (dij) is a first-order differentiation matrix on N + 1

nodes. A similar procedure can be carried out for Wm(zn); #(zn) and #m(zn).



42 G. McKay

In the collocation method we require that (36) and (37) are satisfied at the node points
xi; i = 0; : : : ; N . If Dk represents the kth-order differentiation matrix for k = 2 and 4, we
obtain by substituting zn = xi (i = 0; : : : ; N) in system (36)–(37)

0
BBBBBB@

D4 � 2�2D2 + �4 I ��2Ra I 0 0

N D2 � �2 I + M 0 0

0 0 D2 � �2
m I �2

mRam I

0 0 Nm D2 � �2
m I + Mm

1
CCCCCCA

0
BBBBB@

w

#

wm

#
m

1
CCCCCA

� �

0
BBBBBB@

D2 � �2 I 0 0 0

0 Pr I 0 0

0 0 �Ad̂2(D2 � �2
m I) 0

0 0 0 Pr
(d̂2=k̂) I

1
CCCCCCA

0
BBBBB@

w

#

wm

#
m

1
CCCCCA =

0
BBBBB@

0

0

0

0

1
CCCCCA ; (42)

where wm;# and#m are the vectors of function values at node points. I is the (N+1)�(N+1)
identity matrix. M and N are the diagonal matrices representing � exp( ��) and�(d=�) d��=dz
at node points (with similar definitions for Mm and Nm).

Figure 6. Marginal stability curves for different
ratios d̂; (� � ��): d̂ = 4�5, ( ): d̂ = 4�7,
(� � �): d̂ = 4�9; �l = 1�0; k̂ = 0�5; � =

0�5; Da = 10�5; � = 0�02.

Figure 7. Normalized vertical velocity compo-
nents; (a): d̂ = 1, (b): d̂ = 5; �l = 1�0; k̂ =
0�5; � = 0�5; Da = 10�4; � = 0�02.

A collocation method is favoured here because of the presence of nonlinear coefficients
in (36) and (37). For spectral methods (e.g. Chebyshev–Tau methods) we require to calcuate
the inner product of exp( ��) or d��=dz with some trial function. The collocation method is
simpler as we need only calculate exp( ��) or d��=dz at the node points, thus greatly reducing
processor time.

Finally, we incorporate the boundary conditions at zn = 1 or zn = �1. The zero boundary
conditions for W;Wm; #; #m at zn = �1 reduce our matrix equation to a 4N � 4N gen-
eralized eigenvalue problem for � and a reduced eigenvector (w;#;wm;#m)T . The reduced
eigenvector no longer includes function values at node point x0 = �1. The eigenvalues are
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obtained via the QZ algorithm of Moler and Stewart [26], andW (zn) can then be determined
from (41).

Since we require to find only the eigenvalue of system (42) closest to zero, there is little
variation in our results for different N . When N = 25 and N = 50, our critical numbers in
general vary by no more than 0�5 percent; so in the following we have fixed the number of
intervals to be N = 25. For all the data considered here we find that Im(�) = 0 at the critical
point, i.e., exchange of stabilities holds and any disturbances grow with time monotonically.
Therefore in Section 4 our critical conditions for instability are independent of Pr;A and 
.

4. Results

Marginal stability curves given in Figure 6 represent values of (Ra; �2) for which there exist
eigenvalues �(Ra; �2) satisfying (39). The curves are bimodal, similar to those in Chen and
Chen [9] for superposed layers without heat generation. For the data considered, when d̂ < 4�7
it can be seen that the critical (or minimum) Rayleigh number in on the short-wave branch
of the curve. This critical point corresponds to the onset of convection dominated by motions
in the fluid layer. For d̂ > 4�7, motions are concentrated in the porous region, characterized
by a longer wavelength. Whenever we express results for this regime, we employ the critical
numbers Ramc and amc.

To demonstrate this bimodal nature, in Figure 7 we have plotted vertical velocity compo-
nents for the original domain z 2 (�d̂; 1) at the onset of convection, continuous at the interface
and normalized to have a unit maximum. When d̂ is above the bimodal point there are signif-
icant fluid motions in the porous layer, although the maximum velocity is still attained in the
fluid due to the low permeability of the porous matrix. Once d̂ is below the bimodal point,
motions in the fluid layer become more prominent; as d̂ becomes even smaller there is almost
no convection in the porous region.

In Figures 8 and 9 we have plotted Rac and �c against d̂ for Frank–Kamenetskii numbers
below the ignition values. Depth ratios are chosen in the range 0�01 to 1�0, below the critical
bimodal ratios for the given �. In Figure 10, Ramc and �mc are given for � = 0 and d̂ > 5
(above the bimodal value for � = 0). Observe that, as d̂ increases towards the bimodal point,

Figure 8. Variation of critical Rayleigh number
with d̂; �l = 1�0; k̂ = 0�5; � = 0�5; Da =
10�5.

Figure 9. Variation of critical wavenumber with
d̂; �l = 1�0; k̂ = 0�5; � = 0�5; Da = 10�5.



44 G. McKay

Figure 10. Critical numbers varying with d̂ for porous region dominated convection; �l = 1�0; k̂ = 0�5; � =
0�5; Da = 10�5; � = 0.

Figure 11. Variation of critical numbers with �; �l = 1�0; k̂ = 0�5; � = 0�5; Da = 10�5.

Figure 12. The effect of porosity on critical
Rayleigh number and wavenumber;�l = 1�0; k̂ =

0�5; d̂ = 1�0; Da = 10�5; � = 0�2.

Figure 13. Variation of critical Rayleigh num-
ber and wavenumber with Darcy number; �l =

1�0; k̂ = 0�5; d̂ = 1�0; � = 0�5; � = 0�2.
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Rac decreases. Beyond this critical depth Ramc increases, while the critical wavenumbers
behave in a similar way to the Rayleigh numbers. For d̂ very small, the porous region has a
small destabilizing effect with an associated reduction in wavenumber. Similarly, when d̂ is
large, the presence of the small fluid layer has an effect on stability in the larger porous region.
In the intermediate region about the bimodal point the critical numbers depend strongly on
d̂. This is due to the dependence of the Rayleigh numbers on the depth of the individual
regions; with fixed thermal boundary conditions any change in the layer thickness affects the
temperature gradients across the system. Note that for � = 0, as d̂! 0 or d̂!1 our critical
numbers approach the classical values for a single fluid layer with rigid boundaries, or a porous
region; i.e. (Rac; �c) = (1707�76; 3�116) when d̂ = 0, or (Ramc; �mc) = (39�48; 3�142) as
d̂!1.

Figure 11 shows critical values for fixed d̂ as the Frank–Kamentskii number is increased
from zero to the ignition value for the given �. Larger values of � correspond to more
heat production by the reacting fluid. This internal heating has a destabilizing effect on the
system with lower critical Rayleigh numbers and an associated linear decrease in critical
wavenumbers.

A similar volumetric heating effect is shown in Figure 12. As the porosity of the porous
matrix increases, the proportion of fluid in the saturated region also grows. This leads to
increased heat production during the chemical reaction in the lower part of the system. The
resulting change in thermal gradients has a destabilizing effect on the fluid motions, while the
wavenumber is relatively unaffected.

Finally, Figure 13 indicates the influence of variable Darcy number on the system. When
Da is small, there is virtually no fluid motion in the porous region, so the critical Rayleigh
number remains almost constant. As Da increases (or the matrix permeability increases) it
becomes easier for the fluid to move in the saturated layer. Thus, the critical Rayleigh number
decreases with a corresponding reduction in critical wavenumber.

5. Conclusions

We have examined the onset of buoyancy-driven convection in a layer of reacting fluid
overlying a saturated porous region. By calculating a conduction solution we have shown that
the ignition Frank–Kamenetskii number for the system decreases rapidly when the ratio of
porous/fluid layer thickness is close to its bimodal value; the effect of variable wall temperature
on ignition is similar to that when there is no fluid layer present. Initial temperature profiles
are continuous across the total domain, but distinct within each layer.

Employing a simple linear stability analysis and introducing physically relevant boundary
conditions at the porous/fluid interface, we have derived critical conditions for the onset
of motion in both layers. The relative thickness of the two layers determines whether this
convection is concentrated in the fluid region or the porous layer. The presence of thin layers
has a small destabilizing influence on the system. However, close to the bimodal value any
variation in depth ratio has an important effect on the thresholds for stability and critical
wavenumbers.

The amount of heat entering the system escalates as the Frank–Kamenetskii number or
porosity increase. This change in internal heating lowers the critical Rayleigh number and
wavenumber. Similarly, increasing the permeability of the porous matrix will destabilize the
reacting fluid and lower the critical wavenumber. Our linear stability analysis, in addition to
the model comprising the equations of motion in the two-layer system and chosen boundary
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conditions, appears to have captured the physics of the onset of convection. The analysis and
the methods utilized can therefore be employed in the modelling of any relevant applications.
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